
rdc-etl Documentation
Release 1.0.0a6

Romain Dorgueil

April 18, 2014

Contents

1 Install 3
1.1 Using PyPI . 3
1.2 Using git . 3

2 Kickstart 5

3 Create an empty project 7

4 Overview 9
4.1 Create transformations . 9
4.2 Build your job . 10
4.3 Tie transformations together . 10
4.4 Run the job . 10

5 Jobs 11

6 Transformations 13
6.1 Extracts . 13
6.2 Loads . 13
6.3 Maps . 13
6.4 Filters . 13
6.5 Joins . 14
6.6 Utilities . 14
6.7 Flow-related . 14
6.8 Input / output design . 14

7 Filesystem 17

8 Database 19

9 Statuses 21
9.1 ConsoleStatus . 21

10 Cookbook 23
10.1 Recipe: Simple data processing . 23
10.2 Recipe: Read and write from/to CSV files . 25

11 Contributing 27
11.1 Roadmap . 27

i

12 Indices and tables 29

Python Module Index 31

ii

rdc-etl Documentation, Release 1.0.0a6

Extract Transform Load (ETL) toolkit for python.

DIY framework to create multithreaded python callables that can transform any stream(s) of key/value lists into any
other stream(s).

Concepts are similar to heavy market tools like talend or pentaho, but unlike those, it’s a lightweight framework and
there is no wysiwyg editor provided.

Contents 1

rdc-etl Documentation, Release 1.0.0a6

2 Contents

CHAPTER 1

Install

1.1 Using PyPI

The project is currently marked as alpha. It’s available on PyPI, but you need to specify a version spec for pip to find
it:

$ pip install rdc.etl==1.0.0a3

You can also ask for the latest version:

$ pip install rdc.etl\>1.0.0a

You should be done. You can check in a python shell that it worked.

>>> from rdc.etl import __version__
>>> print __version__

1.2 Using git

You can also install rdc.etl from sources, using git. Depending on what you want to do, you can either use
master branch which contains the latest stable code (aka what is published to PyPI), or the dev branch (aka the
target of incoming cool features).

$ git clone https://github.com/rdcli/etl.git
$ cd etl
$ python setup.py develop

Note: Virtualenv usage is highly advised.

3

rdc-etl Documentation, Release 1.0.0a6

4 Chapter 1. Install

CHAPTER 2

Kickstart

To get started, you should also read pragmatic examples in the Cookbook.

2.1 Create an empty project

If you want to bootstrap an ETL project on your computer, you can now do it using the provided PasteScript template.

pip install PasteScript
paster create -t etl_project MyProject

2.2 Overview of concepts

2.2.1 Extract

Extract is a flexible base class to write extract transformations. We use a generator here, real life would usually use
databases, webservices, files ...

from rdc.etl.transform.extract import Extract

@Extract
def my_extract():

yield {’foo’: ’bar’, ’bar’: ’min’}
yield {’foo’: ’boo’, ’bar’: ’put’}

For more informations, see the extracts reference.

2.2.2 Transform

Transform is a flexible base class for all kind of transformations.

from rdc.etl.transform import Transform

@Transform
def my_transform(hash, channel):

yield hash.update({
’foo’: hash[’foo’].upper()

})

5

rdc-etl Documentation, Release 1.0.0a6

For more informations, see the transformations reference.

2.2.3 Load

We’ll use the screen as our load target ...

from rdc.etl.transform.util import Log

my_load = Log()

For more informations, see the loads reference.

Note: Log is not a “load” transformation stricto sensu (as it acts as an identity transformation, sending to the default
output channel whatever comes in its default input channel), but we’ll use it as such for demonstration purpose.

2.3 Run

Let’s create a Job. It will be used to:

• Connect transformations

• Manage threads

• Monitor execution

from rdc.etl.job import Job

job = Job()

The Job has a add_chain() method that can be used to easily plug a list of ordered transformations together.

job.add_chain(my_extract, my_transform, my_load)

Our job is ready, you can run it.

job()

For more informations, see the jobs documentation.

6 Chapter 2. Kickstart

CHAPTER 3

Jobs

3.1 Concept

The Scheduler and the Overseer

Jobs, (previsouly harness), are the glue that ties transformations together and let them interract.

>>> job = Job()

Jobs have a few purposes:

• Manage the graph. and their input/output channels and connections.

>>> # Add a transform. Each transform has its own thread. You should avoid using the lower level method ‘‘add()‘‘
>>> # unless you perfectly understand the underlying mechanisms.
>>> job.add_chain(t1, t2, t3)

• Manage threads and work units. Each transform is contained in a thread that will live from the job start to
whatever means that the contained transform is now “dead”. The job will dispatch work between those threads,
and monitor their status.

>>> # Show thread status
>>> print ’\n’.join(map(repr, h.get_threads()))
(1, - Extract-1 in=1 out=3)
(2, - SimpleTransform-2 in=3 out=3)
(3, - Log-3 in=3 out=3)

The format of the tuples shown is the following:

(id, state name statistics)

Id is a simple numeric identifier that indexes the transform and associated thread. State is either “+” for “alive
thread” or “-” for “finished/dead thread”. Name is the thread name, most often built using the transform name and a
thread id. Statistics is the number of lines that got read or written to input / output on this transform.

• Manage execution. Once configured, your ETL process will be runnable by calling the job instance.

>>> # Call the job == run the ETL process
>>> job()

3.2 API

7

rdc-etl Documentation, Release 1.0.0a6

8 Chapter 3. Jobs

CHAPTER 4

Transformations

Transformations are the basic bricks to build ETL processes. Basically, it gets lines from its input and sends trans-
formed lines to its output.

You’re highly encouraged to use the rdc.etl.transform.Transform class as a base for your custom
transforms, as it defines the whole I/O logic. All transformations provided by the package are subclasses of
rdc.etl.transform.Transform.

Builtin transformations reference

4.1 Extracts

4.1.1 Extract (base class and decorator)

4.1.2 DatabaseExtract

4.1.3 FileExtract

4.2 Loads

The code there is lacking quality and completion, even if it works.

4.2.1 DatabaseLoad

4.3 Maps

4.3.1 Map (base class and decorator)

4.3.2 CsvMap

4.3.3 XmlMap

4.4 Filters

Filters remove some lines from the flux.

9

rdc-etl Documentation, Release 1.0.0a6

4.5 Joins

Inner or outer join on data (similar to database joins/products)

Not to be mistaken for flow-based joins that work on I/O channels.

TODO

4.6 Utilities

Helper and utility transformations.

4.6.1 Log

4.6.2 Stop

4.6.3 Override

4.6.4 Clean

4.6.5 SimpleTransform

4.7 Flow-related

Flow related transformations are there to build jobs that will split data from one channel into more than one or the
opposite, taking more than one input channel and “joining” data into one output channel.

TODO

Design notes

4.8 Input / output design

4.8.1 Basics

All you have to know as an ETL user, is that each transform may have 0..n input channels and 0..n output channels.
Mostly because it was fun, we named the channel with representative *nix-file-descriptor-like names, but the similarity
ends to the name.

The input multiplexer will group together whatever comes to one of the inputs channels and pass it to the
transformation’s transform() method.

The transform method should be a generator, yielding output lines (with an optional output channel id):

def transform(hash, channel=STDIN):
yield hash.copy({’foo’: ’bar’})
yield hash.copy({’foo’: ’baz’})

10 Chapter 4. Transformations

rdc-etl Documentation, Release 1.0.0a6

4.8.2 Input and output

All transforms are expected to have the following attributes:

• _input, which should implement IReadable

• _output, which should implement IWritable

When you’re using rdc.etl.transform.Transform, the base class will create them for you as an
InputMultiplexer and an OutputDemultiplexer, each one having a list of channels populated after read-
ing the INPUT_CHANNELS and OUTPUT_CHANNELS transformation attributes. By default, transformations have
one default STDIN input, one default STDOUT output and one alternate STDERR output. You can virtually have
infinite input or outputs in your transformations (as though I have hard time imagining a use).

4.8.3 Example

Here is a simple transform that takes whatever comes to STDIN and put it on STDOUT and STDOUT2, and that puts
everything that comes to STDIN2 and send it to STDERR.

from rdc.etl.transform import Transform
from rdc.etl.io import STDIN, STDIN2, STDOUT, STDOUT2, STDERR

class MyTransform(Transform):
INPUT_CHANNELS = (STDIN, STDIN2,)
OUTPUT_CHANNELS = (STDOUT, STDOUT2, STDERR,)

def transform(self, hash, channel=STDIN):
if channel == STDIN:

yield hash
yield hash, STDOUT2

elif channel == STDIN2:
yield hash, STDERR

4.8. Input / output design 11

rdc-etl Documentation, Release 1.0.0a6

12 Chapter 4. Transformations

CHAPTER 5

Filesystem

Not really implemented, would like some abstraction for this.

You can use FileExtract to read a file into a field.

t = FileExtract(’/tmp/filename’, output_field=’_content’)
job.add_chain(t)

If you don’t need to keep a lot of different things, you can use the default output_field (subject, context) that is _. It
can be handy as transforms that only act on one field will read this one by default.

t1 = FileExtract(’/tmp/file.csv’)
t2 = CsvMap()
job.add_chain(t1, t2)

13

rdc-etl Documentation, Release 1.0.0a6

14 Chapter 5. Filesystem

CHAPTER 6

Database

Not really implemented, would like some abstraction for this.

For now, use sqlalchemy engines.

15

rdc-etl Documentation, Release 1.0.0a6

16 Chapter 6. Database

CHAPTER 7

Statuses

Statuses are the tools to observe a process execution state. Not documented yet, but try the following before you run
the job:

>>> from rdc.etl.status.console import ConsoleStatus
>>> job.status.append(ConsoleStatus())

7.1 ConsoleStatus

17

rdc-etl Documentation, Release 1.0.0a6

18 Chapter 7. Statuses

CHAPTER 8

Cookbook

8.1 Recipe: Simple data processing

8.1.1 What we want to achieve

8.1.2 Pipeline structure

8.1.3 Code

-*- coding: utf-8 -*-

from rdc.common.util.text import slughifi
from rdc.etl.extra.util import TransformBuilder
from rdc.etl.hash import Hash
from rdc.etl.job import Job
from rdc.etl.transform.extract import Extract as _Extract
from rdc.etl.transform import Transform as _Transform
from rdc.etl.transform.util import Log

Create our data extractor. Here, we use a simple generator to create it.
@TransformBuilder(_Extract)
def Extract():

yield Hash((
(’id’, 1,),

19

rdc-etl Documentation, Release 1.0.0a6

(’name’, ’John Doe’,),
(’position’, ’CEO’,),

))
yield Hash((

(’id’, 2,),
(’name’, ’Jane Doe’,),
(’position’, ’CTO’,),

))
yield Hash((

(’id’, 3,),
(’name’, ’George Sand’,),
(’position’, ’Writer’,),

))

Transform our data
#
A Transform created using a decorator is built from a function taking a hash and a channel id, we will ignore
channel id here.
@TransformBuilder(_Transform)
def Transform(h, c):

Create slug applying a field transformation
h[’slug’] = slughifi(h[’name’])

Rename ’name’ field and call it ’full_name
h.rename(’name’, ’full_name’)

Send our modified hash to the default output channel/pipeline
yield h

Create the job
job = Job()
job.add_chain(Extract(), Transform(), Log())

Run it
if __name__ == ’__main__’:

job()

8.1.4 Output

$ python example/cookbook/01_simple.py

····{1}···
id:int → «1»
position:str → «CEO»
slug:str → «john-doe»
full_name:str → «John Doe»

··

····{2}···
id:int → «2»
position:str → «CTO»
slug:str → «jane-doe»
full_name:str → «Jane Doe»

··

20 Chapter 8. Cookbook

rdc-etl Documentation, Release 1.0.0a6

····{3}···
id:int → «3»
position:str → «Writer»
slug:str → «george-sand»
full_name:str → «George Sand»

··

8.1.5 Pitfalls

This job is pretty useless, because it reads hardcoded values and write the result to your current terminal. You may
want to read:

• Recipe: Read and write from/to CSV files

8.2 Recipe: Read and write from/to CSV files

8.2.1 What we want to achieve

We want to write the exact transformation that we wrote in Recipe: Simple data processing, except that we will read
data from an input CSV file, and write the result to an output CSV file.

8.2. Recipe: Read and write from/to CSV files 21

rdc-etl Documentation, Release 1.0.0a6

8.2.2 Pipeline structure

22 Chapter 8. Cookbook

CHAPTER 9

Contributing

The code is available on github.

$ git clone https://github.com/rdcli/etl.git

The way to contribute is to fork the project in your own github account, and then make pull requests. If you don’t want
to use github, you can send pull requests by mail (git format-patch is your friend) to romain(at)rdc(dot)li.

It’s probably a good idea to discuss ideas before starting to implement.

You’re also (more than) very welcome to improve the documentation, or the unit tests.

The project roadmap is available below.

This package is used on live systems, and no backward incompatible feature will be implemented in 1.x after 1.0.0 has
been released (at least, we’ll try). See Semantic Versionning.

9.1 Roadmap

9.1.1 General

• Documentation, more documentation, better documentation

• Test coverage

• Examples

• “Job” tests

9.1.2 Milestone 1.0

IO channels management

• (DONE) Multiple input/output possible for each transformation, with default channels

• (DONE) “Converging stars” (V model), “diverging stars” (reverse V) and diamond should be possible

• See how we deal with cycles, I guess a “health check” pass is necessary to ensure that all paths have an end.

23

http://github.com/rdcli/etl/
http://semver.org/

rdc-etl Documentation, Release 1.0.0a6

Error handling

• Exceptions are sent to stdout, destroying statuses

• There should be recoverable and fatal errors

• stderr should be a special output stream that handle exceptions, and all stdouts should be plugged into some
handler.

• errors should appear in status

• React to Control-C (KeyboardInterrupt)

9.1.3 Milestone 1.1

Services/Connections/...

• what is a good name for this ?

• databases, webservices, filesystems, http, ...

• stats (r/w)

Display/status

• Better Log() (nice tables wanted)

• wsgi status ? (html) mail status ?

• Catchall for unplugged IO channels ? For example, all messages going to unplugged STDERR channels could
be sent to a given transform, so we can act (email ...)

9.1.4 Milestone 1.2

• Whatever will be needed at this time, let’s focus on first versions for now (ideas welcome).

9.1.5 Ideas

• “daemon” jobs. Live forever, whenever something triggers an input, it runs through the transformations. Use
cases: live index update, PUT/POST webservice.

24 Chapter 9. Contributing

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

25

rdc-etl Documentation, Release 1.0.0a6

26 Chapter 10. Indices and tables

Python Module Index

r
rdc.etl.extra.db.extract, ??
rdc.etl.extra.db.load, ??
rdc.etl.extra.simple, ??
rdc.etl.io, 15
rdc.etl.status, 21
rdc.etl.status.console, 21
rdc.etl.transform.extract, 13
rdc.etl.transform.extract.file, 13
rdc.etl.transform.filter, 13
rdc.etl.transform.map, 13
rdc.etl.transform.map.csv, 13
rdc.etl.transform.map.xml, 13
rdc.etl.transform.util, 14

27

	Install
	Using PyPI
	Using git

	Kickstart
	Create an empty project
	Overview
	Create transformations
	Build your job
	Tie transformations together
	Run the job

	Jobs
	Transformations
	Extracts
	Loads
	Maps
	Filters
	Joins
	Utilities
	Flow-related
	Input / output design

	Filesystem
	Database
	Statuses
	ConsoleStatus

	Cookbook
	Recipe: Simple data processing
	Recipe: Read and write from/to CSV files

	Contributing
	Roadmap

	Indices and tables
	Python Module Index

